
8, Israel
l

PHYSICAL REVIEW E MAY 1998VOLUME 57, NUMBER 5
Deterministic transport in biased maps: Crossover from dispersive to regular transport
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We investigate the influence of a weak uniform fielde on chaotic diffusion generated by iterated maps
which, in the absence of the field, lead to subdiffusion. Whene50, the probability densityc(t) of the escape
times from the vicinity of the fixed points of the maps decays as a power law. When a field is switched on,
c(t) decays exponentially at long enough times, with a decay rate that diverges whene becomes small. The
mean displacement and mean squared displacement show a transition from an anomalous type of motion, valid
at short times, to a normal behavior at long times.@S1063-651X~98!11404-6#

PACS number~s!: 05.45.1b, 05.40.1j, 05.60.1w, 02.50.2r
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I. INTRODUCTION

Deterministically generated normal and anomalous dif
sion are by now well established. Simple theoretical to
which lead to such diffusional processes are one-dimensi
iterated maps, which generate sets of trajectories accor
to an iteration rulexn115g(xn) @1–6#. Most of the existing
works have concentrated on maps which have the symm
properties

g~x!52g~2x! and g~x1N!5g~x!1N, ~1!

with N being an integer. Averaging over initial condition
one obtains the mean squared displacement

^x2~ t !&;td, ~2!

where the exponentd depends on a single parameter of t
maps@3, 4#. Depending ond, Eq. ~2! describes subdiffusion
also referred to as dispersive diffusion (d,1), normal dif-
fusion (d51), or enhanced diffusion (d.1). It has been
shown that the statistical properties of the trajectories ge
ated by these maps are well described by random walk m
els, especially by continuous time random walks~CTRW’s!
@3–8#. The symmetry properties of the previously conside
maps guarantee that, for properly chosen initial conditio
no drift exists, so that̂x(t)&50.

In spite of their simplicity one-dimensional iterated ma
provide a useful description and understanding of comp
motion with trajectories that resemble those observed in
periments. Geisel, Nierwetberg, and Zacherl@4# applied such
a map to model diffusion in Josephsons junctions. Refere
@8# considered a one-dimensional map that generates in
mittent chaotic motion with both dispersive and enhanc
modes of diffusion. Similar behavior has been found in
recent experiment by Solomon, Weeks, and Swinney@9# on
tracer particles in a two-dimensional rotating flow. It h
been observed that under certain conditions the tracer
ticles perform long flights but are intermittently trapped
space for long times. Direct measurements show that b
the flight times and trapping times are distributed accord
to power laws. Recently, Weeks, Urbach, and Swinney@10#
applied a bias to the tracer particles, and measured the
as well as the trapping and flight times. It is therefore
571063-651X/98/57~5!/5237~10!/$15.00
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interest to investigate maps under bias, and find whether
can be useful in describing biased transport of particles.

Here we consider the transport properties of particles s
ject to biased maps. We add a weak uniform biase to a map,
which otherwise behaves subdiffusively, and calculate diff
ent features of the response to the external field. The fi
which acts on the system from one end to the other i
uniform way, breaks the symmetry of the system. Previo
works considered three other types of fields which break
symmetry of the mapg(x). These include environmenta
fluctuations~time dependent noise! @11#, quenched disorde
~time independent! @12# and the so called geometric and d
namical bias@13–15#, for which the enhanced diffusion re
gime was investigated. The first two cases did not lead t
net drift, while the third case produces a drift. The perturb
tions considered by Trefa´n and co-workers@13–15# are very
different from the field introduced here. Similarities and d
ferences between our and previous results will be discus
briefly in the last section. Two topics are addressed in t
paper.

~1! The time evolution ofxn on short length scales. It ha
been shown that slow diffusion is caused by particles wh
are trapped for long periods of time close to unstable fix
points of the map@3#. We study the statistical nature of th
escape times from points in the vicinity of a fixed poi
across a fixed boundary. Especially, we would like to kn
the dependence of the these times on the external field
interesting result is that the power law dependence of
probability density function~p.d.f.! of the escape times, char
acteristic of thee50 case, crosses over to an exponen
behavior in the presence of a field. Hence, this p.d.f. is s
sitive to the external bias.

~2! The evolution on longer length scales. When a b
exists the symmetry of the map is broken, and a drift occu
Among other things we show that for small but finitee,
^x(t)&e increases linearly with time at long times. We al
show that for any finitee there exists a time after which th
mean squared displacement increases linearly with time.
transport behaves anomalously for short times and t
crosses over to a normal type of behavior.

II. DISPERSIVE MOTION

Geisel and Thomae@3# introduced a one-dimensional ma
for which the mean squared displacement behaves subd
5237 © 1998 The American Physical Society
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5238 57E. BARKAI AND J. KLAFTER
sively. Following this work, a similar map was considered
Ref. @5#, and the corresponding probability distributio
P(x,t) to be at locationx at time t was calculated. They
demonstrated that the CTRW is a valid stochastic descrip
of the diffusion processes which are the outcome of th
deterministic maps.

The biased map considered here is

xn115g~xn!1e, ~3!

whereg(x) has a periodic shift symmetry and inversion a
tisymmetry @Eq. ~1!#. The weak biase, introduced here,
breaks the antisymmetry of the system. Using Eqs.~1! and
~3!, the definition ofg(x) is required only in the range 0
<x, 1

2 . Following Ref.@16#, one decomposes the coordina
xn into a box numberNn and the position 0, x̃ n,1 within
the box,

xn5Nn1 x̃ n . ~4!

Thus the box numberNn and reduced coordinatex̃ n are it-
erated according to

x̃ n115 g̃e~ x̃ n!,

Nn115Nn1ĝe~ x̃ n!, ~5!

where g̃e( x̃ ) is the reduced map for the reduced coordin
x̃ , and ĝe( x̃ ) is used to increment or decrement the b
numberN.

Geisel and Thomae@3# considered a rather wide family o
maps which behave as

g~x!5~11l!x1axz for x→10 ~6!

wherel!1 andz.1. We use a map which belongs to th
family @5#,

g~x!5x1axz, 0<x,
1

2
~7!

with a52z. In Fig. 1, we show the mapg(x)1e for three
boxes. Notice that the bias shifts the fixed points from th
e50 integer values.

Consider first the casee50 which was investigated pre
viously. The probability density of the residence time in
cell, for l→0, is @3#

c~ t !5
2a

@2z211a~z21!t#z/~z21!
, ~8!

displaying a power law behavior. The normalized functi
Eq. ~8! is used within the framework of the CTRW to calc
late P(x,t) and ^x2(t)& @5#. Settingg[ 1/(z21) one finds,
for t→`,

^x2~ t !&;H tg 0,g,1

t/ ln~ t ! g51

t g.1.

~9!
n
e

-

e

ir

It should be emphasized that these results are quite gen
and apply to the class of maps that fulfill Eq.~6!. One sees
that the exponentz determines the universality class of th
diffusion ~dispersive or normal diffusion!. Notice also that
for 0,g,1 the mean timet̄ 5*0

`tc(t)dt diverges. Exten-
sive numerical checks of these results were carried ou
Refs.@3# and @5#.

III. ESCAPE TIME

In this section we treat both analytically and numerica
a first passage time problem. We consider a particle loca
initially close to a fixed point. We then ask how many iter
tions of the map are needed, so that the particle will cros
boundary. The trajectories which originate in the vicinity
the fixed point are of special interest, since they are resp
sible for the trapping which is the reason for the slow d
namics that leads to subdiffusion.

The map, defined by Eqs.~1!, ~3!, and~7!, has an infinite
number of unstable fixed points. Since the map has the p
odic shift symmetry defined in Eq.~1!, even in the presence
of the field, it is enough to consider the fixed pointx* in the
vicinity of x50. For e>0, the fixed point satisfies

x* 52S e

aD 1/z

<0. ~10!

We assume that the field is weak, so the shift of the fix
point from its integer value is small compared with the s
of the box.

Close to the fixed point the incrementxn112xn is small,
and so we approximate the map by a differential equatio

dx

dt
5 f ~x!1e, ~11!

with f (x)5g(x)2x. Such a continuous approximation o
the map is common and was used successfully in the the

FIG. 1. The mapg(x)1e in the interval21,x,2 for z52
anda54. The field chosen,e50.1, helps to demonstrate the shif
of the fixed point from theire50 values.
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57 5239DETERMINISTIC TRANSPORT IN BIASED MAPS: . . .
of intermittency @17#. Since the fixed point is unstable,
particle initially situated to the right~left! of the fixed point
at xR(0).x* @xL(0),x* # will flow rightward ~leftwards!.
The time tR (tL) it takes a right~left! particle to reach a
boundarybR.xR(0) @bL,xL(0)# is

t i5E
xi ~0!

bi dx

f ~x!1e
, ~12!

wherei 5L or R. In what follows we shall consider first th
times tR .

A. Right escape time

Inserting the explicit expression forf (x) into Eq.~12! we
find

tR55 ExR~0!

0 dx

2auxuz1e
1E

0

bR dx

auxuz1e
, xR~0!,0

E
xR~0!

bR dx

auxuz1e
, xR~0!>0.

~13!

We define the initial displacement from the fixed point

dxR[xR~0!2x* .0. ~14!

The asymptotic behavior oftR when

S a

e D 1/z

dxR!1 ~15!

is found by the method of integration by parts,

tR.2
1

z
e~12z!/za2 1/z lnFzS a

e D 1/z

dxRG , ~16!

exhibiting a logarithmic divergence of the escape time
small initial displacements.

The p.d.f.cR(tR) of the escape times will be now calcu
lated in a way which is similar to the Geisel and Thom
approach@3#. During the evolution of the system particle
are injected close to the vicinity of fixed points. The p.d.f.
the right escape timescR(tR) is related to the unknown p.d.f
of the injection pointshR@xR(0)#, through

cR~ tR!5hR@xR~0!#UdxR~0!

dtR
U. ~17!

The behavior ofcR(tR) at long times is determined by th
p.d.f. of the injection pointsxR(0) in the vicinity of the fixed
point. ExpandinghR@xR(0)# aroundxR(0)5x* , and using
Eq. ~16!, we obtain the lowest order approximation,

cR~ tR!;c1 exp@2a~e!tR#, ~18!

with

a~e!5za1/ze~z21!/z. ~19!

c1 in Eq. ~18! depends on the p.d.f. of injection points. Th
exponential relaxation ofcR(tR) replaces the power law be
havior in the casee50. This asymptotic behavior ofcR(tR)
r

f

guarantees that for any small but finite field all moments
the escape times exist. The exponential decay of the p.d
dictated by a relaxation ratea(e), which becomes smaller a
the strength of the bias becomes weaker. It is interestin
note that the exponent (z21)/z, in the expression of the rat
@Eq. ~19!# is the same exponent that controls the behavior
cR(tR) in the absence of the bias@see Eq.~8!#.

We first assume a uniform density of injection points,

hR@xR~0!#5H 1

b2x*
, x* ,xR~0!,b

0, otherwise.

~20!

For this choice, the averaged time^tR& scales according to

^ tRa1/ze~z21!/z&5Gz~yR!, ~21!

where

yR[
bR

ux* u
~22!

is a dimensionless variable. The scaling functionGz(yR) de-
pends on the exponentz which determines the universalit
class of the diffusion. This relationship is useful for scali
representation of data. To see why this scaling form is c
rect we rewrite Eq.~13! as

tRa1/ze~z21!/z5H~xR ,yR!, ~23!

with the dimensionless initial condition

xR[
xR~0!

ux* u
, ~24!

and with

H~xR ,yR!5E
xR

0 dw

2uwuz11
1E

0

yR dw

uwuz11

for 21,xR,0, and

H~xR ,yR!5E
xR

yR dw

uwuz11
~25!

for 0<xR,yR . We then integrate Eq.~23!, using Eq.~20!,
and obtain the scaling result@Eq. ~21!# with the scaling func-
tion

Gz~yR!5
1

yR11E21

yR
dw H~w,yR!. ~26!

The scaling relation@Eq. ~21!# has been derived using th
assumption of a uniform injection of particles. In the Appe
dix, we give a more general condition on the p.d.f. of inje
tion points for which scaling holds.

We now investigate the field dependence of^tR&, since
both the drift ^x(t)& and the mean squared displaceme
^x2(t)& depend on the mean escape time. Integrating by p
the left hand side of Eq.~21!, we find
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5240 57E. BARKAI AND J. KLAFTER
^tR&5
1

a1/ze~z21!/z

1

11yR
S E

0

yR w11

wz11
dw1E

0

1 12w

12wz
dwD .

~27!

The asymptotic behavior of^tR&, whenyR@1, depends onz.
For valuesz.2, which in the absence of the field corr

spond to dispersive diffusion,

^tR&.
1

e~z22!/z

Cz

bRa2/z
, ~28!

with the numerical factor

Cz5E
0

` w11

wz11
dw1E

0

1 12w

12wz dw. ~29!

For z,2, for which diffusion is normal, we find

^tR&.
1

~22z!bR
z21a

, ~30!

and, for the intermediate casez52,

^tR&.
lnFbRS a

e D 1/2G
bRa

. ~31!

Notice that whenz,2, ^tR& is independent of the weak field
This result is expected since^tR&, whene50, exists. Forz
.2 ande50, ^tR& does not exist. Equation~28! shows that
for small fields^tR& diverges as a power law with the exp
nent (z22)/z.

B. An example

We now consider the special casez52, and analyze it in
some detail. This choice enables us to find the analyt
expression for the p.d.f.cR(tR).

Integrating Eq.~13! and using a table of integrals@18#, we
find

tR5
1

Aea
H 2arctanhFxR~0!

ux* u
G1arctanS bR

ux* u
D J

for x* ,xR(0),0, and

tR5
1

Aea
H 2arctanFxR~0!

ux* u
G1arctanS bR

ux* u
D J ~32!

for 0,xR(0),bR . Here

arctanh~x!5
1

2
lnS 11x

12xD for @21,x,1#.

AveragingtR over the uniform injection p.d.f. Eq.~20! gives
@18#
al

^tR&5
1

Aea

1

11
bR

ux* u

H ln~2!1arctanS bR

ux* u
D

1
1

2
lnF11S bR

ux* u
D 2G J . ~33!

The behavior of̂ tR& strongly depends on the location of th
boundarybR . WhenbR50,

^tR&5
ln~2!

Aea
, ~34!

while when

yR5
bR

ux* u
5

bRAa

Ae
@1, ~35!

Eq. ~31! is valid. Both Eqs.~31! and Eq.~34! show a diver-
gence of̂ tR& ase→0. However, the location of the bound
ary bR determines the type of divergence.

We have checked these predictions numerically using
recursion relation@Eq. ~7!#. The trajectory of a particle ha
been followed, and once it passed a fixed boundary it w
reinjected randomly and uniformly back into the interv
x* ,x,bR . In Fig. 2 we plot^tR& vs e on a log-log scale.
We have chosen two boundary conditions:bR50, for which
Eq. ~34! applies, andbR50.05, for which Eq.~31! applies.
The results of the numerical experiment are in good agr
ment with the analytical derivations. Deviations are notic
for the fielde50.01. We believe these deviations are caus
by the discrete nature of the map which cannot be ov
looked whene becomes large and simultaneously^tR& be-
comes smaller. When iterating the map the escape times

FIG. 2. The escape timêtR& for two choices of the location of
the boundarybR . Each point is found after averaging over 40 00
escape events. The solid curve (bR50) is the theoretical result in
Eq. ~34!. The dashed curve (bR50.05) is the result in Eq.~31!.
Herea54.



t
o
o
is
s

.

o

c

d

e

ent

q.
y

r-

es

id-

4,
qs.
t
e.
the
e
w
ape

n
.f.,
aw.
5,

nu-
,

ical
ong

ing
d
tial
in

as

.

th

57 5241DETERMINISTIC TRANSPORT IN BIASED MAPS: . . .
tain integer values, while the escape times, when calcula
with the differential equation, are continuous. Therefore f
short escape times the differential equation is not a go
approximation for the iterated map. Another cause for d
agreement between theory and numerical calculation ari
when iterations are performed far from the fixed point. The
the differencexn112xn is not small, as can be seen in Fig. 1
Iterations far from the fixed point enter whenbR is large, a
case for which the differential equation approximation is n
expected to be valid.

In Fig. 3 we display the scaled averaged time and che
the scaling behavior numerically. The curve plotted is th
theoretical prediction given by Eq.~33!. When yR,1, the
scaled averaged time behaves as a constant, while whenyR
.1 it decreases as predicted by Eq.~31!. Scaling is observed
to hold well for weak fields. Small deviations are foun
when the strength of the field ise51023; for this case the
differential equation is not such a good approximation for th
recursion relation.

For the casez52, one obtains an exact expression for th
p.d.f. of the escape times. Using Eq.~17!, we find

cR~ tR!5
e

bR2x*

1

cos2@ tRAea2fR#
for tR,t tran,

~36!

cR~ tR!5
e

bR2x*

1

cosh2@ tRAea2fR#
for t tran,tR ,

~37!

with the phase

FIG. 3. The scaled averaged timeAea^tR& vs the scaled bound-
ary condition ubR /x* u is displayed for three values of the field
Varying the location of the boundary in the range 0,bR,0.5 we
find numerically the averaged time of escape. Each point is
average over 40 000 escape events.
ed
r
d
-
es
n

t

k
e

e

fR5arctanS bR

ux* u
D ,

and the transition time

t tran5

arctanS bR

ux* u
D

Aea
, ~38!

which gives the crossover time between the two differ
types of behaviors of the p.d.f. WhenbR /ux* u@1, the tran-
sition time diverges according to

t tran.
p

2Aea
. ~39!

WhenbR50, t tran50, and the p.d.f. decays according to E
~37!. For long times,t@t tran, the p.d.f. decays exponentiall

cR~ tR!;exp~22tAea!, ~40!

as predicted in Eq.~18!. As mentioned, this behavior gua
antees that for finitee all the moments of the p.d.f. exist.

In the limit e→0 (bR finite!, we obtain the p.d.f.

lim
e→0

cR~ tR!5
bRa

~11bRatR!2
, ~41!

showing the expected power law dependence for long tim
cR(tR);tR

22, and the divergence of the moments oftR . This
behavior was anticipated in previous works which cons
ered the casee50 @set bR50.5 in Eq. ~41! and obtain Eq.
~8!#. It is interesting to compare the p.d.f. whene→0 to the
p.d.f. when the field is finite but small. This is done in Fig.
where the p.d.f. is shown for three different fields using E
~36! and~37!, as well as the result in Eq.~41!. One sees tha
when t!t tran all four curves converge to a single curv
Hence the behavior of the p.d.f. for times shorter then
transition timet tran follows a power law. To determine th
correct asymptotic behavior of the p.d.f. it is useful to kno
the transition time. This means that measuring the esc
times ~say numerically! for not long enough observatio
times, might lead to the wrong conclusion that the p.d
even in the presence of the field, behaves like a power l

The above behavior is observed numerically in Fig.
where the p.d.f. is plotted for the special casee5431026.
The boundarybR has been chosen to satisfybR /ux* u51.
One observes good agreement between theory and the
merical results. In Fig. 6 a log-log plot of the p.d.f. is shown
and a power law behavior is observed whent,t tran. Here
the boundary has been chosen to satisfybR /ux* u5500. For
very short times, deviations between theory and numer
data exist due to the discrete nature of the map. For very l
times one notices the exponential behavior of the p.d.f.

We also carried out numerical experiments without us
the uniform injection of particles to the vicinity of the fixe
point. An ensemble of trajectories was produced. The ini
conditions of these trajectories were distributed uniformly
the interval (0,1). For each initial condition the map w

e
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5242 57E. BARKAI AND J. KLAFTER
iterated for timest satisfyingt.t tran. Then we continued to
iterate the map until the particle was injected in the vicin
of a fixed point. The trajectory was followed until the pa
ticle crossed a boundary. In this case the injection p.d.f
not assumed to be uniform, and may have a structure
depends on the details of the map. This method has the

FIG. 4. The p.d.f.cR(tR) on a log-log scale. The solid curv
corresponds to lime→0cR(tR). The other three curves givecR(tR)
~a! e5431026, the short dashed line;~b! e5431027, the dash
dotted line; and~c! e5431028, the long dashed line. As the fiel
strength is decreased, the transition time to the exponential beh
of the p.d.f. becomes longer. Here the boundary isbR50.5.

FIG. 5. The p.d.f.cR(t) for a boundary valuebR50.001. Here
e5431026 anda54, and therefore,x* 520.001. The transition
time and the averaged escape time are indicated by the dot-da
and dashed vertical lines respectively. FortR.t tran the linearity of
the curve indicates the exponential relaxation. FortR,t tran we also
plot lime→0cR(tR), Eq. ~41!. The bin length for the histogram i
unity. 106 escaped times were recorded.
is
at
is-

advantage of being numerically less efficient as compa
with the previous method. However, the p.d.f. obtained
this way mimics in a better way the p.d.f, we encounter
the transport process.

In Fig. 7, we present the p.d.f. for the fielde51024.
Notice that for long times the p.d.f decays exponentially w
time. Good agreement is observed between the numeric
calculated points and the theoretical curve calculated un
the assumption of a uniform injection. Figure 8 displays t
data on a log-log plot for the casee5431026. We have

ior

hed

FIG. 6. The p.d.f.cR(tR) on a log-log plot. Here the boundar
bR50.5. The dashed line is the limite→0 of the p.d.f. The dot-
dashed line is the theoretical curve. 108 escaped times were re
corded.

FIG. 7. Using the map Eq.~7!, we find the p.d.f. of right escape
times. The boundary is located atb50.1, the number of realization
is 106, ande51024. The solid curve is the theoretical prediction
Eq. ~37!.
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57 5243DETERMINISTIC TRANSPORT IN BIASED MAPS: . . .
also plotted the theoretical prediction in the limite→0. For
times t,t tran, we see that the p.d.f behaves as a power l
while for t.t tran the exponential decay is observed. The
jection p.d.f obtained numerically for our choice of para
eters is found to be quite flat, which explains the good agr
ment between the theory and the numerical calculation.

C. Left escape time

The biase breaks the symmetry of the map and therefo
the left escape timetL behaves differently thantR . The fol-
lowing results for the left escape time have been derived
similar way to those obtained for the right escape time. U
ing Eq. ~12!,

tL5E
xL~0!

bL dx

2auxuz1e

with

bL,xL~0!,x* ,0. ~42!

We define the initial displacement from the fixed point

dxL[xL~0!2x* ,0, ~43!

and find the asymptotic behavior oftL

tL.2
1

z
e~12z!/za2 1/z lnFzS a

e D 1/z

udxLuG , ~44!

which is exactly the same behavior found for the escape t
tR . This means that the asymptotic, largetL , behavior of the
p.d.f. of the escape timescL(tL) decays exponential with th

FIG. 8. The p.d.f. on a log-log plot for the biase5431026, and
b50.1. The number of realizations is 43106. The dashed line is
the theoretical prediction in Eq.~37!. The dot-dashed line is the
limit e→0 of the p.d.f. Eq.~41!. As shown in Fig. 4, choosing a
smaller value ofe increases the time window in which the pow
law behavior is observed.
,
-
-
e-

e

a
-

e

ratea(e) defined in Eq.~19!. To obtain the asymptotic de
pendence of̂ tL& on e, we again use a uniform injection o
particles,

hL@xL~0!#5H 1

x* 2bL

, bL,xL~0!,x*

0, otherwise.

~45!

Using this p.d.f. for averagingtL , we find

^tL&5e~12z!/za2 1/z
1

yL21E1

yL w21

wz21
dw, ~46!

with

yL[ubLuS a

e D 1/z

. ~47!

WhenyL@1, three types of asymptotic behaviors are foun

^tL&.5
1

e~z22!/z

1

ubLua2/zE1

` x21

xz21
dx, z.2

lnF ubLuS a

e D 1/2G
ubLua

,
z52

1

~22z!ubLuz21a
, z,2.

~48!

These asymptotic results show that forz<2, ^tL&5^tR&
when ubLu5bR .

The p.d.f. of the left escape times forz52 is

cL~ tL!5
e

2bL1x*

1

sinh2~AeatL1fL!
, ~49!

with the phase

fL5arccothS ubLu

ux* u
D .

In the limit e→0, we find

lim
e→0

cL~ t !5 lim
e→0

cR~ t ! ~50!

where lime→0cR(t) is given in Eq.~41!.
We see that although the left and right times are not id

tical, the p.d.f.’scR(t) andcL(t) share some common fea
tures: the long time behavior, thee dependence of the aver
aged escape times whene is small, and the approach to
power law behavior whene→0 ~here shown only forz
52).

IV. MEAN AND MEAN SQUARED DISPLACEMENTS

The mean displacement^x(t)& and the mean squared dis
placements2(t)5^x2(t)&2^x(t)&2 are now investigated. In
Fig. 9 we present a typical trajectory of the particle obtain
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from a numerical iteration of the map for the casez52 and
e50. We notice that the particle is trapped for long perio
of time. The trapping occurs close to fixed points. In Fig.
a trajectory is presented fore50.001. The initial condition
for this trajectory is identical to the one chosen for the t
jectory considered in Fig. 9; however, now one does
observe long trapping events. Also seen in Fig. 10 is a
drift in the direction of the applied field. The difference b
tween Figs. 9 and 10 is a manifestation of the difference
the p.d.f.’scR(t) and cL(t) with and without a field@Eqs.
~8! and ~18!#.

It has been shown that, at least, for the casee50 @3,5# the
CTRW can be used to describe the statistical propertie
the dynamics of the map. The CTRW model describe
particle hoping from site to site and pausing at each
@19,20#. The main result of the CTRW theory, relevant to o

FIG. 9. A typical trajectory resulting from 43104 iterations of
the map for the parametersz52, a54, ande50.

FIG. 10. Same as Fig. 9, for a biase50.001.
s

-
t

et

n

of
a
e

work here, is that, when the averaged pausing time^t&, the
averaged length of the displacement^ x̃ &, and ^ x̃2& exist,
then, for long times,

^x~ t !&.
^ x̃ &

^t&
t ~51!

and

^s2~ t !&.2Dt, ~52!

with the diffusion constant

D5
^ x̃2&
2^t&

. ~53!

Equations~51! and~53! do not hold when̂ t& diverges, that
is, whene50 andz>2 @3#.

We define the pausing time,t[tL (t[tR) if the particle
is injected to the left~right! of a fixed point. Then the aver
aged pausing, or escape, time is

^t&5PL^tL&1PR^tR&, ~54!

where PL (PR) is an unknown probability, in an ongoin
process, that a particle will be injected to the vicinity of
fixed point and flow to left~right!. Using this approach we
can reach several qualitative conclusions.

Since we have shown that the averaged escape times^tR&
and ^tL& exist @Eqs. ~27!–~30! and ~45! for finite e], then,
according to Eqs.~51! and ~52!, the mean displacement an
mean squared displacement increase linearly with time w
eÞ0. Thus dispersive diffusion found fore50 turns into
normal diffusion for any small though finitee.

This type of behavior is observed in our numerical sim
lations carried out for the special casez52. The initial con-
ditions of these trajectories have been distributed uniform
in the interval (0,1). Averages have been taken over6

realizations. In Fig. 11 thet/^x(t)& vs ln(t) curve shows that

FIG. 11. t/^x(t)& vs ln(t) for different values of the biase. Here
z52 anda54, and the average is over 106 realizations.
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for short times^x(t)& is a nonlinear function of time. Fo
long timest/^x(t)& is a constant independent of ln(t). This
can be seen best for the curve which corresponds te
50.001, where the transition time from dispersive to norm
type of behaviors is relatively short.

The transition from dispersive to normal type of motio
can be observed better when considering the mean squ
deviation^s2(t)&. In Fig. 12, t/^s2(t)& vs ln(t) is displayed
for different fields. Two kinds of behaviors are found:~1!
For e50 a linear curve is found meaning thats2(t)
;t/ ln(t), as predicted in Eq.~9! and observed previously in
Ref. @3#. ~2! For e50.001, the behaviors(t);t is found for
long times as predicted in Eq.~52!. One sees that the larger
the applied field the shorter is the transition time to norm
behavior.

In order to find the field dependence of the diffusion, w
notice that

D;
1

^t~e!&
, ~55!

since lime→0^ x̃2& is finite and independent ofe. Clearly, due
to symmetry, for very weak fields,

PR50.51j~e! and PL50.52j~e!, ~56!

wherej(e) is small. We find, using Eqs.~29!–~31!, ~48!, and
~56!, that, for weak fields,

D;H const, z,2

1/u lnAeu, z52

e~z22!/z, z.2,

~57!

independent ofj(e). As expected, forz,2, the diffusion
constant is independent ofe ~since we know thatD is finite
whene50). Forz.2 the diffusion constant, which vanishe

FIG. 12. t/^s2(t)& vs ln(t) for different values of the bias. Othe
parameters of the map are specified in Fig. 11. The predi
asymptotic slopes are shown for two cases.
l

red

l

when e50, shows a power law dependence on the we
external field. The results in Eq.~57! are derived here within
a space-time decoupled scheme of the CTRW. The s
results, however, are obtained when coupling is assume
the limit of e→0 @21#.

The dependence of^x(t)& on e cannot be determined in
similar way since we do not know thee dependence of̂x̃ &
in Eq. ~51!. This question has to do with the response
these maps to an external bias, a subject we plan to ch
numerically. Thus our results can be used to predict a lin
dependence of̂x(t)& on t, but not the response of^x(t)& to
the field.

An important issue is the relation between drift and d
fusion in deterministic systems. This issue has been tac
previously in a somewhat similar context by Trefa´n and co-
workers@13–15#. One might expect the Green Kubo relatio
@22# and the generalized Einstein relation@23# to determine
the relationship between the drift and diffusion. The gen
alized Einstein relation states that the response^x(t)&e of the
particles to an external weak and uniform fielde obeys

^x~ t !&e5k1e^x2~ t !&e50 , ~58!

where ^x2(t)&e50 is the mean squared displacement of t
particles with no bias andk1 is a constant. The theoretica
basis for this relation is a linear response to the external fi
However, numerical simulations@21# show that the respons
(^x&) to the external field is nonlinear. Therefore the Einste
approach cannot be used. Furthermore, for long times^x(t)&
increases linearly with time wheneÞ0, while Eq.~9! shows
that ^x2&e50 may increase nonlinearly with time and s
clearly the generalized Einstein relation@Eq. ~58!# fails to
describe the transport generated by the maps.

V. SUMMARY

The results of adding bias to deterministic systems, wh
lead to regular or anomalous diffusion, depend on the na
of the applied field and on the underlying system. Bias c
therefore be used to control transport properties of such
tems by changing the motion from anomalous to regular
vice versa. Studying ways to introduce bias, and analyz
systems under applied fields, have been growing rese
areas@13–15,10,24,25# Ishizaki and Mori@24# investigated
the forced standard map, the Josephson map, and de
strated a transition from regular to anomalous transport
model to explain the tracer diffusion experiments of Swinn
and co-workers@9,10# was proposed by del-Castillo-Negre
@25#. The model leads to anomalous diffusion under bias

Here the effect of an external field on one-dimensio
maps which generate deterministic diffusion has been inv
tigated both analytically and numerically. A weak unifor
bias breaks the symmetry of the system and leads there
to a net averaged drift. We have shown that the p.d.f. of
escape times is sensitive to the field. When the field
switched on, right and left escape times become nonide
cal. The p.d.f. in the absence of the field follows a pow
law. In the presence of the weak uniform field the the p.d
decays exponentially for large times. The rate of decay of
p.d.f.’s a(e), given in Eq.~19!, approaches zero as a pow
law in the field for all values ofz. Since the power law

d
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behavior of the p.d.f. manifests itself in anomalous diffusi
when z>2, the presence of the field destroys this behav
.and regular transport appears at long times for allz.

Trefán and co-workers@13–15# previously considered the
influence of a perturbation on closely related maps wh
generate enhanced diffusion. They considered both a
namical bias and geometrical bias~see details in Ref.@13#!.
Under their assumptions the motion may cross over fr
enhanced to regular. The drift is introduced in their appro
by assuming two different waiting time p.d.f.’s~left and
right!. This is obtained by driving the left laminar regio
with the perturbed map@Eq. ~6!# with a nonvanishingl. In
the current work the field is homogeneous; the bias lead
a shift of the fixed points and to the breakdown of symme
The perturbation considered by Trefa´n and co-workers lead
to a waiting time p.d.f.,

lim
t→`

cT~ t !;
exp~2c1lt !

tm
, ~59!

where c1 is a constant. The rate of the exponential dec
grows linearly with the perturbationl. This is different from
our result@Eq. ~18!#, where the ratea(e) @Eq. ~19!# increases
nonlinearly withe.

APPENDIX

Here we give the more general condition onhR@xR(0)#
for which scaling exists, with a scaling functionG̃z(yR)
which may differ from the functionGz(yR). A straightfor-
ward change of variables in Eq.~25! leads to

^ tRa1/ze~z21!/z&5ux* u E
21

yR
db hR~bux* u!H~b,y!. ~A1!
ev

s

v.
r

h
y-

h

to
.

y

It follows immediately that if a dimensionless functio
f (b,yR) exists, such that

ux* uhR~bux* u!5 f ~b,yR!, ~A2!

then we find the scaling relation

^ tRa1/ze~z21!/z&5E
21

yR
db f ~b,yR!H~b,yR![G̃z~yR!. ~A3!

Functions that satisfy the condition in Eq.~A2! are the
p.d.f.’s which scale like

hR@xR~0!#5
1

L
h̄RFxR~0!

L G with L[ux* u1bR ; ~A4!

here h̄R(x) is a dimensionless function ofx. The prefactor
1/L guarantees thathR@xR(0)# has the units@Length#21. To
see this, we use Eq.~A4! and obtain

ux* uhR~bux* u!5
1

11yR
h̄RS b

11yR
D , ~A5!

which clearly satisfies the condition in Eq.~A2!. That is,
when the p.d.f.hR@xR(0)# scales withL in a way defined in
Eq. ~A4!, the scaling relation Eq.~A3! for the mean escape
time exists.L is the length of the interval into which particle
are injected. In an ongoing process particles are injec
from cell to cell. Injection events occur from points far fro
the fixed point. The scaling will work well when the injec
tion p.d.f. depends on the single length scaleL. It should be
noted that the injection probability depends on the glo
details of the map and not only on the behavior close to
fixed point, which means that scaling depends on the mo
under consideration.
t.

ev.
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