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Deterministic transport in biased maps: Crossover from dispersive to regular transport
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We investigate the influence of a weak uniform figddbn chaotic diffusion generated by iterated maps
which, in the absence of the field, lead to subdiffusion. Whet®, the probability densitys(t) of the escape
times from the vicinity of the fixed points of the maps decays as a power law. When a field is switched on,
(1) decays exponentially at long enough times, with a decay rate that divergesewemomes small. The
mean displacement and mean squared displacement show a transition from an anomalous type of motion, valid
at short times, to a normal behavior at long timex1063-651X98)11404-9

PACS numbg(s): 05.45+b, 05.40+j, 05.60+w, 02.50—r

[. INTRODUCTION interest to investigate maps under bias, and find whether they
can be useful in describing biased transport of particles.
Deterministically generated normal and anomalous diffu- Here we consider the transport properties of particles sub-
sion are by now well established. Simple theoretical tooldect to biased maps. We add a weak uniform fids a map,
which lead to such diffusional processes are one-dimensionafhich otherwise behaves subdiffusively, and calculate differ-
iterated maps, which generate sets of trajectories accordirf't features of the response to the external field. The field
to an iteration rulex,,, ;=g(x,) [1—6]. Most of the existing which acts on the system from one end to the other in a

works have concentrated on maps which have the symmetdyiform way, breaks the symmetry of the system. Previous
properties orks considered three other types of fields which break the

symmetry of the mam(x). These include environmental
g(x)=—g(—x) and g(x+N)=g(x)+N, (1) fluctuations(time dependent noi$¢11], quenched disorder

(time independeni12] and the so called geometric and dy-

with N being an integer. Averaging over initial conditions namical biag13-185, for which the enhanced diffusion re-

one obtains the mean squared displacement gime was investigated. The first two cases did not lead to a
net drift, while the third case produces a drift. The perturba-
(xz(t)>~t‘5, (2 tions considered by Trefieand co-worker§13—15 are very

different from the field introduced here. Similarities and dif-

where the exponend depends on a single parameter of theferences between our and previous results will be discussed
maps[3, 4]. Depending ord, Eq.(2) describes subdiffusion, briefly in the last section. Two topics are addressed in this
also referred to as dispersive diffusiod<(1), normal dif- paper.
fusion (6=1), or enhanced diffusion&>1). It has been (1) The time evolution ok, on short length scales. It has
shown that the statistical properties of the trajectories geneeen shown that slow diffusion is caused by particles which
ated by these maps are well described by random walk modare trapped for long periods of time close to unstable fixed
els, especially by continuous time random walkSRW'’s) points of the mag3]. We study the statistical nature of the
[3—8]. The symmetry properties of the previously consideredescape times from points in the vicinity of a fixed point
maps guarantee that, for properly chosen initial conditionsacross a fixed boundary. Especially, we would like to know
no drift exists, so thatx(t))=0. the dependence of the these times on the external field. An

In spite of their simplicity one-dimensional iterated maps/Ntéresting resuit is that the power law dependence of the
provide a useful description and understanding of compleroPability density functiorip.d.f) of the escape times, char-
motion with trajectories that resemble those observed in engte”S.t'C of thee=0 case, crosses over to an exponential
periments. Geisel, Nierwetberg, and Zachidilapplied such _e.hawor in the presence of a field. Hence, this p.d.f. is sen-
a map to model diffusion in Josephsons junctions. Referenc%mve to the exter.nal bias. .
[8] considered a one-dimensional map that generates inter- (2) The evolution on longer length scales. When a bias

mittent chaotic motion with both dispersive and enhanceoexIStS the symmetry of the map is broken, and a drift occurs.

modes of diffusion. Similar behavior has been found in aAmong other things we show that for small but finiee

recent experiment by Solomon, Weeks, and Swini@yon (x(t)). increases Ii_ne_:arly with tir_ne at I_ong times. We also
tracer particles in a two-dimensional rotating flow. It hasShoW that for any finites there exists a time after which the

been observed that under certain conditions the tracer pafi€an squared displacement increases linearly with time. The

ticles perform long flights but are intermittently trapped in transport behaves anomalously for short times and then
space for long times. Direct measurements show that botfifoSses over to a normal type of behavior.

the flight times and trapping times are distributed according
to power laws. Recently, Weeks, Urbach, and Swinjid}
applied a bias to the tracer particles, and measured the drift Geisel and Thomal8] introduced a one-dimensional map
as well as the trapping and flight times. It is therefore offor which the mean squared displacement behaves subdiffu-

Il. DISPERSIVE MOTION
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sively. Following this work, a similar map was considered in I | ‘

Ref. [5], and the corresponding probability distribution |

P(x,t) to be at locationx at timet was calculated. They L

demonstrated that the CTRW is a valid stochastic description

of the diffusion processes which are the outcome of these -

deterministic maps. "
The biased map considered here is )

fav)

l

|

|
- -

i

Xn+1=0(Xp) +€, 3 oL

L

whereg(x) has a periodic shift symmetry and inversion an- |
tisymmetry [Eq. (1)]. The weak biase, introduced here, !
breaks the antisymmetry of the system. Using Eds.and l
(3), the definition ofg(x) is required only in the range 0 . :
|
|

(@)
I
|

<x< 3. Following Ref.[16], one decomposes the coordinate

X, into a box numbeN,, and the position &% ,<1 within
the box,

Xy=Np+ X . (4) B

Thus the box numbeN,, and reduced coordinate, are it-

erated according to FIG. 1. The mapy(x) + € in the interval —1<x<2 for z=2

anda=4. The field chosens=0.1, helps to demonstrate the shifts
~ ~ ~ of the fixed point from theie=0 values.
Xn+1: ge(xn)a
It should be emphasized that these results are quite general
Nps1=Np+39.(X,), (5) and apply to the class of maps that f_ulflll E(@). One sees
that the exponent determines the universality class of the

Whereﬁe(i) is the reduced map for the reduced coordinatediﬁUSion (dispersive or normal diffusign Notice also that

X, and @E(SZ) is used to increment or decrement the boxf(?r 0<y< 1, the mean time =Jqty(t)dt diverges. Exten- ,
numberN. sive numerical checks of these results were carried out in
Geisel and Thomagg] considered a rather wide family of R€fs-[3] and[S]
maps which behave as . ESCAPE TIME
g(x)=(1+N)x+ax* for x—+0 (6) In this section we treat both analytically and numerically
) ~ a first passage time problem. We consider a patrticle located
wherex <1 andz>1. We use a map which belongs to this jyitially close to a fixed point. We then ask how many itera-
family [5], tions of the map are needed, so that the particle will cross a
boundary. The trajectories which originate in the vicinity of

— z -yl the fixed point are of special interest, since they are respon-
900 =x+ax, 0\X<2 @ sible for the trapping which is the reason for the slow dy-
namics that leads to subdiffusion.
with a=2% In Fig. 1, we show the mag(x)+ € for three The map, defined by Eqgél), (3), and(7), has an infinite
boxes. Notice that the bias shifts the fixed points from theimumber of unstable fixed points. Since the map has the peri-
e=0 integer values. odic shift symmetry defined in Eq1), even in the presence

Consider first the case=0 which was investigated pre- of the field, it is enough to consider the fixed paokitin the
viously. The probability density of the residence time in avicinity of x=0. Fore=0, the fixed point satisfies
cell, for A —0, is[3]

24 <0. (10
- —, 8
[22 Y +a(z- 1)Y=V We assume that the field is weak, so the shift of the fixed

_ _ _ _ ~point from its integer value is small compared with the size
displaying a power law behavior. The normalized functiongf the box.

Eq. (8) is used within the framework of the CTRW to calcu-  Close to the fixed point the incremexyt., ; — x,, is small,

Late P(x,t) and(x?(t)) [5]. Settingy= 1/(z—1) one finds, and so we approximate the map by a differential equation
or t—oo,

P(t)=

dx
t” 0<y<1 g [+ (11
()~ tin(t)  y=1 O with f(x)=g(x)—x. Such a continuous approximation of

t v>1. the map is common and was used successfully in the theory
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of intermittency[17]. Since the fixed point is unstable, a guarantees that for any small but finite field all moments of

particle initially situated to the rightieft) of the fixed point
at xg(0)>x* [x,(0)<x*] will flow rightward (leftwards.
The timetg (t) it takes a right(left) particle to reach a
boundarybg>xg(0) [b . <x,(0)] is

dx

b;
ti:fxi<0)f(x)+6’ (12

wherei =L or R. In what follows we shall consider first the
timestg.

A. Right escape time
Inserting the explicit expression fé(x) into Eq.(12) we

find
0 dx br dx
LR(O)—a|x|Z+e+fo axire XR0)=0
tr= br dx
JxR(o)—a|X|z+€, Xgr(0)=0.
(13

We define the initial displacement from the fixed point

the escape times exist. The exponential decay of the p.d.f. is
dictated by a relaxation rate(e), which becomes smaller as
the strength of the bias becomes weaker. It is interesting to
note that the exponent{ 1)/z, in the expression of the rate
[Eqg. (19)] is the same exponent that controls the behavior of
r(tr) in the absence of the bigsee Eq.8)].

We first assume a uniform density of injection points,

1
b—x*’
01

x* <xgr(0)<b

7R Xr(0)]= (20

otherwise.

For this choice, the averaged tinii;) scales according to

(trae* V' =G,(yr), (21)
where
br
= 22
YR x| (22)

is a dimensionless variable. The scaling funct@yg) de-
pends on the exponeatwhich determines the universality
class of the diffusion. This relationship is useful for scaling

p— _wv*
XR=XR(0)=x*>0. (14 representation of data. To see why this scaling form is cor-
The asymptotic behavior df when rect we rewrite Eq(13) as
a| 1 tra'?e* " =H(xg,yr), (23
with the dimensionless initial condition
is found by the method of integration by parts, 0)
X
1 a1z XR= R—*, (24
tr=— Eeufz)’za* Y2 n z(;) SXg|, (16) [x*]
o S ) and with
exhibiting a logarithmic divergence of the escape time for
small initial displacements. _ _ o dw v dw
The p.d.f.¢r(tg) of the escape times will be now calcu- H(xR,yR)=f . +f .
lated in a way which is similar to the Geisel and Thomae e —|w*+1 Jo |w[*+1
approach[3]. During the evolution of the system particles _
are injected close to the vicinity of fixed points. The p.d.f. of for —1<x<0, and
the right escape timegg(tg) is related to the unknown p.d.f. e dw
. . . . R
of the injection pointsyg[xz(0)], through H(XR,YR):I - (25)
XR |W| +1
~ dx(0)
Yr(tr) = 7r[XR(0)] dtg 17) for 0s<xr<ygr. We then integrate Eq23), using Eq.(20),

and obtain the scaling resiiEq. (21)] with the scaling func-
The behavior ofyg(tg) at long times is determined by the tion

p.d.f. of the injection pointgg(0) in the vicinity of the fixed

point. Expandingng[ Xg(0)] aroundxg(0)=x*, and using 1 YR
Eq. (16), we obtain the lowest order approximation, Galyr) = yrt+1 7ldW H(W.Yr). (26)
Yr(tr)~Cy exd — a(e)tr], 18 The scaling relatiorfEq. (21)] has been derived using the
with assumption of a uniform injection of particles. In the Appen-
dix, we give a more general condition on the p.d.f. of injec-
a(e)=zalZez iz, (19)  tion points for which scaling holds.

We now investigate the field dependence(tf), since
c, in Eqg. (18) depends on the p.d.f. of injection points. The both the drift (x(t)) and the mean squared displacement
exponential relaxation afiz(tg) replaces the power law be- (x?(t)) depend on the mean escape time. Integrating by parts
havior in the case=0. This asymptotic behavior af(tg) the left hand side of Eq21), we find
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(0 i g o s [0
RIT Qlizg(z-1)z 1+yR\ 0 w+1 01-w*

(27)

The asymptotic behavior @tg), whenyg>1, depends og.

For valuesz>2, which in the absence of the field corre-

spond to dispersive diffusion,

1 G

(tr)= ez 2z [y g2’ (28)
with the numerical factor
C—JOCW+1d +J11_Wd 29
T lowr ™ ot @
For z< 2, for which diffusion is normal, we find
tR)=——"7, (30)
(tw) (2—2)b% la
and, for the intermediate cage-2,
a 1/2
In| bg z
(tR)=——F—7—. (31

bra

Notice that wherz<2, (tg) is independent of the weak field.

This result is expected singég), whene=0, exists. Forz

>2 ande=0, (tg) does not exist. Equatiof28) shows that
for small fields(tg) diverges as a power law with the expo-

nent z—2)/z.

B. An example

We now consider the special case 2, and analyze it in
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FIG. 2. The escape timgg) for two choices of the location of
the boundanbg. Each point is found after averaging over 40 000
escape events. The solid curdez&0) is the theoretical result in
Eq. (34). The dashed curvebg=0.05) is the result in Eq(31).
Herea=4.

1 br
b In(2) +arctal —
I+ ]

[x*|

1
(tr)= Jea

] . (33

The behavior of tg) strongly depends on the location of the
boundarybg. Whenbg=0,

some detail. This choice enables us to find the analyticalhile when

expression for the p.d.iRr(tR).
Integrating Eq(13) and using a table of integrdl&8], we

find
1 Xr(0 b
tr=—=—={ —arctan L) +arcta —
Vea | x| |x*|
0 b
) +arctar( ﬁ)] (32
X

for x* <xg(0)<0, and
i 1 ; XR(
=—={ —arctap———
" Vea [x*]

for 0<xgr(0)<bg. Here

1 1+x
arctanl(lx)=§ In 1-x for [—1<x<1].

Averagingtg over the uniform injection p.d.f. E420) gives
[18]

(tr)= ne) (39
R/ — \/a ’
br  brya

= =——>1, (35)
PR T e

Eq. (31) is valid. Both Egs(31) and Eq.(34) show a diver-
gence of(tg) ase—0. However, the location of the bound-
ary bg determines the type of divergence.

We have checked these predictions numerically using the
recursion relatiofEq. (7)]. The trajectory of a particle has
been followed, and once it passed a fixed boundary it was
reinjected randomly and uniformly back into the interval
x* <x<bg. In Fig. 2 we plot(tg) vs € on a log-log scale.
We have chosen two boundary conditiobg= 0, for which
Eq. (34) applies, andog=0.05, for which Eq.(31) applies.
The results of the numerical experiment are in good agree-
ment with the analytical derivations. Deviations are noticed
for the fielde=0.01. We believe these deviations are caused
by the discrete nature of the map which cannot be over-
looked whene becomes large and simultaneousty) be-
comes smaller. When iterating the map the escape times ob-
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1 g e . - br.
e @y ?.:y.—*—“—.;”.;/; Ax ‘ ¢R_ arCta’( |X* |) ,

L . and the transition time

bgr )
[ s ) arcta
|x*|

tyran™ )
0.1+ - Y €a

which gives the crossover time between the two different

T

/\’tR :

(38

(ea)t2
‘

Lot

i Tes 1o types of behaviors of the p.d.f. Whéxy/|x*|>1, the tran-
. = - (10)10-5 7 sition time diverges according to
;F ® =02 1 T
tirar™ ——. (39
‘ tran 2\/5
T S T PR P e Whenbg=0, t,,,=0, and the p.d.f. decays according to Eq.
b = (37). For long timest>t,.,, the p.d.f. decays exponentially
FIG. 3. The scaled averaged timea(tg) vs the scaled bound- Yr(tr)~expl — 2t\/ea), (40

ary condition|bg/x*| is displayed for three values of the field. ) ) ) _ )
Varying the location of the boundary in the rangeBz<0.5 we ~ as predicted in Eq(18). As mentioned, this behavior guar-
find numerically the averaged time of escape. Each point is th@ntees that for finite all the moments of the p.d.f. exist.

average over 40 000 escape events. In the limit e—0 (bg finite), we obtain the p.d.f.
tain integer values, while the escape times, when calculated lim ge(te) = bra (41)
with the differential equation, are continuous. Therefore for €0 (1+bgatg)?’

short escape times the differential equation is not a good
approximation for the iterated map. Another cause for disshowing the expected power law dependence for long times
agreement between theory and numerical calculation aris%(tR)qEZ, and the divergence of the momentstgf This
when iterations are performed far from the fixed point. Thenpehavior was anticipated in previous works which consid-
the differencex, 1 — X, is not small, as can be seen in Fig. 1. ered the case=0 [setbg=0.5 in Eq.(41) and obtain Eq.
Iterations far from the fixed point enter whég is large, a  (8)]. It is interesting to compare the p.d.f. wher:0 to the
case for which the differential equation approximation is notp_d.f. when the field is finite but small. This is done in Fig. 4,
expected to be valid. where the p.d.f. is shown for three different fields using Egs.
In Fig. 3 we display the scaled averaged time and check3g) and(37), as well as the result in E¢41). One sees that
the scaling behavior numerically. The curve plotted is theyhen t<ty,, all four curves converge to a single curve.
theoretical prediction given by Ed33). Whenyg<1, the  Hence the behavior of the p.d.f. for times shorter then the
scaled averaged time behaves as a constant, while when transition timet,,, follows a power law. To determine the
>1 it decreases as predicted by E8fl). Scaling is observed correct asymptotic behavior of the p.d.f. it is useful to know
to hold well for weak fields. Small deviations are found the transition time. This means that measuring the escape
when the strength of the field is=10"3; for this case the times (say numerically for not long enough observation
differential equation is not such a good approximation for thesimes, might lead to the wrong conclusion that the p.d.f.,

recursion relation. _ . even in the presence of the field, behaves like a power law.
For the case=2, one obtains an exact expression for the  The above behavior is observed numerically in Fig. 5,
p.d.f. of the escape times. Using E@7), we find where the p.d.f. is plotted for the special case4x 107 .

The boundarybg has been chosen to satisbg/|x*|=1.
One observes good agreement between theory and the nu-
merical results. In Fig6 a log-log plot of the p.d.f. is shown,
and a power law behavior is observed whent,,,. Here

(36)  the boundary has been chosen to satixfy|x* |=500. For
very short times, deviations between theory and numerical
data exist due to the discrete nature of the map. For very long

€ 1 times one notices the exponential behavior of the p.d.f.

b * ) \/— for tyan<tg, We also carried out numerical experiments without using

R™X" Cosliltryea—dr] 37 the uniform injection of particles to the vicinity of the fixed
point. An ensemble of trajectories was produced. The initial
conditions of these trajectories were distributed uniformly in

with the phase the interval (0,1). For each initial condition the map was

€ 1
br—X* cof[tr\ea— g

Yr(tr) = for tg<tyan,

Ur(tr) =
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FIG. 4. The p.d.f.yr(tg) on a log-log scale. The solid curve  FIG. 6. The p.d.fx(tg) on a log-log plot. Here the boundary
corresponds to lim.¥r(tr). The other three curves givg(ts)  bg=0.5. The dashed line is the limi—0 of the p.d.f. The dot-
(8) e=4x107°, the short dashed lindgh) e=4x 10", the dash  dashed line is the theoretical curve.81€scaped times were re-
dotted line; andc) e=4x10"8, the long dashed line. As the field corded.
strength is decreased, the transition time to the exponential behavior

of the p.d.f. becomes longer. Here the boundarjgis0.5. advantage of being numerically less efficient as compared

with the previous method. However, the p.d.f. obtained in
iterated for timed satisfyingt>t,,. Then we continued to this way mimics in a better way the p.d.f, we encounter in
iterate the map until the particle was injected in the vicinitythe transport process.
of a fixed point. The trajectory was followed until the par- In Fig. 7, we present the p.d.f. for the field=10 4.
ticle crossed a boundary. In this case the injection p.d.f. idNotice that for long times the p.d.f decays exponentially with
not assumed to be uniform, and may have a structure thaime. Good agreement is observed between the numerically
depends on the details of the map. This method has the disalculated points and the theoretical curve calculated under
the assumption of a uniform injection. Figure 8 displays the
data on a log-log plot for the case=4x10"%. We have

-25H - -
[ I ] 72 ;
= I | i
£ st . -
< | o
= |
ap " ] &
e = L
I i -4
-351 - S r
ap -
L A 2 [
L _ L
e[
C| L L | L L | L L [N
FIG. 5. The p.d.fyg(t) for a boundary valudgz=0.001. Here 0 100 200 300
e=4%x10"% anda=4, and thereforex* = —0.001. The transition ty
time and the averaged escape time are indicated by the dot-dashed
and dashed vertical lines respectively. EgPt,,, the linearity of FIG. 7. Using the map Ed7), we find the p.d.f. of right escape

the curve indicates the exponential relaxation. fgrt,,, we also  times. The boundary is locatedlat 0.1, the number of realizations
plot lim__o¢r(tr), EQ. (41). The bin length for the histogram is is 1, ande=10 *. The solid curve is the theoretical prediction in
unity. 1¢ escaped times were recorded. Eq. (37).
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0 ' T rate a(e) defined in Eq.(19). To obtain the asymptotic de-
. 1 pendence oft, ) on €, we again use a uniform injection of
R | particles,
i h | . bL<x (0)<x*
_F X (0)]=9§ x* —b, (45)
o] i 0, otherwise.
g | i Using this p.d.f. for averaging , we find
BRI . 1 (w1
an | | t, )= E(lfz)/zaf l/z_f dW, 46
AS) (t) yi—1J1 wi-1 48
| | with
—B | a 1/z
i | yL.=|b.| P (47)
L | L L L | [
0 1 2 3 Wheny, >1, three types of asymptotic behaviors are found:
log,o(t,) )
FIG. 8. The p.d.f. on a log-log plot for the bias=4x 1078, and 1 1 »x—1 7>2
b=0.1. The number of realizations is41(°. The dashed line is €220z |p |a22)1 x2—1
the theoretical prediction in Eq37). The dot-dashed line is the 12
limit e—0 of the p.d.f. Eq(41). As shown in Fig. 4, choosing a In| by | E
smaller value ofe increases the time window in which the power <t|_>2< L e z=2 (48
law behavior is observed. I —
|b|a
also plotted the theoretical prediction in the linait>0. For 1
timest<t,,,, we see that the p.d.f behaves as a power law, PO z<2.
L (2=2)[b [ *a

while for t>t,,, the exponential decay is observed. The in-
jection p.d.f obtained numerically for our choice of param- . _
eters is found to be quite flat, which explains the good agree\}—\lﬁiﬁbjsi/?stouc results show that fee2, (t,)=(tr)

ment between the theory and the numerical calculation. The p.d.f. of the left escape times for2 is

C. Left escape time € 1
The biase breaks the symmetry of the map and therefore hlt)= —b,+x* sintf(\eat, + )’ (49)
the left escape timg behaves differently thatiy. The fol-
lowing results for the left escape time have been derived in &ith the phase
similar way to those obtained for the right escape time. Us-
ing Eq. (12), |b, |
¢ =arccot |
be dx |x*|
t = T
S ko —a|x|*+ € In the limit e—0, we find
with lim o (1) = lim (1) (50
e—0 e—0
b, <x (0)<x*<0. (42
where lim._,q#(t) is given in Eq.(41).
We define the initial displacement from the fixed point We see that although the left and right times are not iden-
tical, the p.d.f.’syr(t) and ¢ (t) share some common fea-
X =x.(0)—x* <0, (43)  tures: the long time behavior, thedependence of the aver-
) ) ) aged escape times whenis small, and the approach to a
and find the asymptotic behavior tf power law behavior where—0 (here shown only forz

=2).

th _ E‘E(lfz)/zaf 1/z In

a1/z
12 1owl], e

IV. MEAN AND MEAN SQUARED DISPLACEMENTS

which is exactly the same behavior found for the escape time The mean displaceme(i(t)) and the mean squared dis-
tg. This means that the asymptotic, latge behavior of the  placemento?(t) =(x?(t)) — (x(t))? are now investigated. In
p.d.f. of the escape timef_(t,) decays exponential with the Fig. 9 we present a typical trajectory of the particle obtained
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FIG. 11.t/(x(t)) vs In() for different values of the bias. Here
z=2 anda=4, and the average is over®‘lealizations.

t

FIG. 9. A typical trajectory resulting from 10" iterations of
the map for the parameters-2, a=4, ande=0.

work here, is that, when the averaged pausing tjmje the

from a numerical iteration of the map for the case2 and dql h of the displ ~ 4 (%2 )
¢=0. We notice that the particle is trapped for long periods2ver@ged length of the displacemef), and (x®) exist,

of time. The trapping occurs close to fixed points. In Fig. 1Othen, for long times,
a trajectory is presented fa=0.001. The initial condition

for this trajectory is identical to the one chosen for the tra- (X(t))= @t (51)
jectory considered in Fig. 9; however, now one does nhot (7)
observe long trapping events. Also seen in Fig. 10 is a net
drift in the direction of the applied field. The difference be- and
tween Figs. 9 and 10 is a manifestation of the difference in (o2(t))=2Dt, (52)
the p.d.f.’s¢(t) and ¢ (t) with and without a field Egs.
(8) and (18)]. with the diffusion constant
It has been shown that, at least, for the cas® [3,5] the
CTRW can be used to describe the statistical properties of (x?)
the dynamics of the map. The CTRW model describes a D= 200 (53

particle hoping from site to site and pausing at each site
[19,20. The main result of the CTRW theory, relevant to our quations(51) and (53) do not hold wher(7) diverges, that

300

100 —

T

J

0 104
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2<104

t
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3104
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FIG. 10. Same as Fig. 9, for a bias-0.001.

is, whene=0 andz=2 [3].

We define the pausing time=t, (7=tg) if the particle
is injected to the leftright) of a fixed point. Then the aver-
aged pausing, or escape, time is

(1)=P(t)+ Pg(tr),

where P, (PRr) is an unknown probability, in an ongoing
process, that a particle will be injected to the vicinity of a
fixed point and flow to left(right). Using this approach we
can reach several qualitative conclusions.

Since we have shown that the averaged escape titags
and(t.) exist[Egs.(27)—(30) and (45) for finite €], then,
according to Egs(51) and (52), the mean displacement and
mean squared displacement increase linearly with time when
e€#0. Thus dispersive diffusion found far=0 turns into
normal diffusion for any small though finite.

This type of behavior is observed in our numerical simu-
lations carried out for the special cazse 2. The initial con-
ditions of these trajectories have been distributed uniformly
in the interval (0,1). Averages have been taken ovet 10
realizations. In Fig. 11 th&/(x(t)) vs In(t) curve shows that

(54
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when €=0, shows a power law dependence on the weak
, external field. The results in E¢G7) are derived here within
— a space-time decoupled scheme of the CTRW. The same
1 results, however, are obtained when coupling is assumed in
1 the limit of e—0 [21].
I The dependence @k(t)) on e cannot be determined in a
- - - similar way since we do not know thedependence ofx)
- ] in Eqg. (51). This question has to do with the response of
I these maps to an external bias, a subject we plan to check
| numerically. Thus our results can be used to predict a linear
= - dependence afx(t)) ont, but not the response ¢k(t)) to
- x ¥ 1 the field.
- 2 ] An important issue is the relation between drift and dif-
I fusion in deterministic systems. This issue has been tackled
B B LA previously in a somewhat similar context by Tnrefand co-
. workers[13—15. One might expect the Green Kubo relation
- . [22] and the generalized Einstein relatif28] to determine
" the relationship between the drift and diffusion. The gener-
F L | T T alized Einstein relation states that the respdné) ). of the
2 4 6 8 particles to an external weak and uniform fieldbeys
In(t)

FIG. 12.t/(a?(t)) vs In() for different values of the bias. Other (X(1)) =Ky €(X3(t)) =0, (58
parameters of the map are specified in Fig. 11. The predicted
asymptotic slopes are shown for two cases. where (x?(t)).—o is the mean squared displacement of the
particles with no bias an#{; is a constant. The theoretical
basis for this relation is a linear response to the external field.
can be seen best for the curve which corresponds to However, numerical gimu_latior[il] show that the response
~0.001, where the transition time from dispersive to normal((x)) to the external field is nonlinear. Therefore the Einstein
type of behaviors is relatively short. approach cannot be used. Furthermore, for long ti(més )

The transition from dispersive to normal type of motion increases linearly with time whe~ 0, while Eq.(9) shows

2 . . . .
can be observed better when considering the mean squar(tah t (x*)e=0 may increase nonlinearly with time and so

deviation(o2(1)). In Fig. 12, t/(o2(t)) vs In®) is displayed cearly the generalized Einstein relatipfq. (58)] fails to
for differént (fi()al>ds. Tvx?o kinds<of (b()a>havior(s) are fcr))ur{d_') describe the transport generated by the maps.

For e=0 a linear curve is found meaning that?(t)

~t/In(t), as predicted in Eq9) and observed previously in V. SUMMARY

Ref.[3]. (2) For e=0.001, the behavior(t) ~t is found for

long times as predicted in E(2). One sees that the larger is le

the applied field the shorter is the transition time to normalOf the applied field and on the underlying system. Bias can

t/{a? )

for short times(x(t)) is a nonlinear function of time. For
long timest/{x(t)) is a constant independent of fh(This

The results of adding bias to deterministic systems, which
ad to regular or anomalous diffusion, depend on the nature

behavior. ;
. ) er therefore be used to control transport properties of such sys-
I_n order to find the field dependence of the diffusion, Wetems by changing the motion from anomalous to regular and
notice that vice versa. Studying ways to introduce bias, and analyzing
1 systems under applied fields, have been growing research
D~—-—, (55) areas[13-15,10,24,2plIshizaki and Mori[24] investigated
(7(€)) the forced standard map, the Josephson map, and demon-

. i ~on i ) strated a transition from regular to anomalous transport. A
since lim._o(x”) is finite and independent ef Clearly, due  mqqel 1o explain the tracer diffusion experiments of Swinney
to symmetry, for very weak fields, and co-worker$9,10] was proposed by del-Castillo-Negrete
[25]. The model leads to anomalous diffusion under bias.

Pr=0.5+£(e) and P, =0.5-¢(e), (56 Here the effect of an external field on one-dimensional
h : Il. We find, using Eq€29)—(31), (48), and  MapPSs which generate deterministic Q|ffu3|on has been. inves-
where¢(e) Is sma Ve nd. using 0¢29)~(31), (48), an tigated both analytically and numerically. A weak uniform
(56), that, for weak fields, ;
bias breaks the symmetry of the system and leads therefore
const, z<2 to a net averaged drift. We have shown that the p.d.f. of the
escape times is sensitive to the field. When the field is
D~1{ 1in \/E|, z=2 (57) switched on, right and left escape times become nonidenti-
ez 759 cal. The p.d.f. in the absence of the field follows a power

law. In the presence of the weak uniform field the the p.d.f.
independent of(e). As expected, foz<2, the diffusion decays exponentially for large times. The rate of decay of the
constant is independent ef(since we know thab is finite  p.d.f.'s a(e), given in Eq.(19), approaches zero as a power
whene=0). Forz>2 the diffusion constant, which vanishes law in the field for all values ofz. Since the power law
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behavior of the p.d.f. manifests itself in anomalous diffusionlt follows immediately that if a dimensionless function
whenz=2, the presence of the field destroys this behaviorf (8,yg) exists, such that

>and regular transport appears at long times forall

Trefan and co-worker$13—15 previously considered the
influence of a perturbation on closely related maps whic
generate enhanced diffusion. They considered both a d

namical bias and geometrical biesee details in Ref.13]).

[x*| 7R(BIX* ) =T(B.Yr), (A2)

3[1en we find the scaling relation

YR ~
Under their assumptions the motion may cross over fron(tRa”Ze(Z_l)/z>=J dB f(B,yrH(B.YR)=G,(Yr). (A3)
enhanced to regular. The drift is introduced in their approach -1

by assuming two different waiting time p.d.f.deft and

right). This is obtained by driving the left laminar region

with the perturbed mafEg. (6)] with a nonvanishing\. In

the current work the field is homogeneous; the bias leads to
a shift of the fixed points and to the breakdown of symmetry.
The perturbation considered by Trafand co-workers leads

to a waiting time p.d.f.,

i exp(—CqAt)
tlTll//T(t)N TR

(59

wherec; is a constant. The rate of the exponential decay

grows linearly with the perturbation. This is different from

our resul{Eq. (18)], where the ratex(€) [Eq. (19)] increases

nonlinearly withe.

APPENDIX

Here we give the more general condition g@g[Xxg(0)]

for which scaling exists, with a scaling functioB,(yg)
which may differ from the functiorG,(yg). A straightfor-
ward change of variables in E(R5) leads to

(tra'Ze® D7) = |x*| fj:dﬁ TR(BIXDH(BY).  (AL)

Functions that satisfy the condition in E¢A2) are the
p.d.f.’s which scale like

Xr(0)

3 with L=|x*|+bg; (A4)

1
7rIXR(0)]= LR

here nx(x) is a dimensionless function of. The prefactor
1/L guarantees thapg[xg(0)] has the unit§Length] 1. To
see this, we use E@¢A4) and obtain

B
1+yg

1
[x* | pr(BIx*[)= Tryg R ; (A5)
which clearly satisfies the condition in E¢A2). That is,
when the p.d.fzg[Xg(0)] scales withL in a way defined in
Eq. (A4), the scaling relation EqA3) for the mean escape
time existsL is the length of the interval into which particles
are injected. In an ongoing process particles are injected
from cell to cell. Injection events occur from points far from
the fixed point. The scaling will work well when the injec-
tion p.d.f. depends on the single length sdaldt should be
noted that the injection probability depends on the global
details of the map and not only on the behavior close to the
fixed point, which means that scaling depends on the model
under consideration.
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